
Ordinal Classification Techniques Applied to Racehorse Ranking

Prediction

Adam Gardiner-Hill MSci - Quantum Leap Solutions

May 11, 2022

Abstract

In this investigation we aim to build upon the work previously conducted in our studies on the application of
machine learning algorithms to race horse ranking prediction. We introduce ordinal classification techniques to

study whether they can improve overall network accuracy when compared to standard classification methodologies.
The ordinal flat model achieved an exact prediction accuracy of 47.9% and an accuracy to within one rank of 95.4%,
whilst the ordinal jumps model achieved an exact accuracy of 49.2% and an accuracy to within one rank of 95.8%.
These results indicated that a slight improvement in network accuracy, especially to within one rank of error, was

achieved with the introduction of ordinal techniques.

Investigation

Ordinal Classification Introduction

In our previous work, we outlined that ‘rankings predic-
tion’ can be thought of as falling somewhere in between
a classification and regression problem. The target
variable exists in discrete groups, but unlike more com-
mon classification problems where each value is entirely
independent of all others, the order of these groups
relative to each other is important. This is because if
the network predicts a rank 4 for a true rank 1, it is
‘more wrong’ than if it predicts a rank 2 or 3 for a true
rank 1. Ordinal classification problems are so named
because the ‘order’ of the target variable is also important.

It is common in classification networks to use loss
functions that punish all incorrect assessments equally,
such as the categorical cross-entropy function we used in
our previous studies. Given by the equation,

Loss = −
n∑

i=1

yi · log(ŷi) (1)

where n is the number of possible output classes, yi is the
target class probability, and ŷi is corresponding output
probability from the Softmax activation function. As can
be inferred from equation 1, any incorrect classification
group will have a term equal to zero in the loss function
because of the yi factor. This means that all incorrect
classifications are punished equally by the loss function
and relative order or ‘closeness’ is disregarded.

To remedy this issue, a dummy variable can be used to
bin classification classes and make them correspond to a
continuous output variable, which can be assigned as the
target for a regression type network. For example, in our
case of four output classes, we can normalise the values
to between 0 and 1. Four bins are then created, with
edges at 0.25, 0.5 and 0.75. Each rank 1-4, can then be

Figure 1: Illustration of the reassignment process to make
classification data ordinal in nature. Each rank is reassigned
to the center of a bin on a line normalised to between 0 and 1.

assigned to a center of each bin, 1 to 0.125, 2 to 0.375,
3 to 0.625 and 4 to 0.875. This process is visualised in
figure 1. This reassignment allows us to use a regression
type network to try and predict a value between 0 and
1 based on the same input variables. Regression type
networks commonly use loss functions such as the mean
squared error to train models, gievn by the equation,

Loss = MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (2)

where N is the number of data instances, yi is the true
value and ŷi is the predicted value. The use of a loss
function of this form will act to punish the network more
severely for predictions that are further away from their
true value than those that are closer, better accounting
for the ordinal nature of the data. Any regression value
predicted by the network for a runner instance can then
be placed into its associated bin, and the corresponding,
discrete 1-4 rank inferred.

Theoretically, this approach should offer improve-
ments in network accuracy, especially to within one rank
of error, due to the increased informational feedback that
the network will receive from its loss function during
training.

1



Data and Pre-Processing

The combined flat and jumps data sets used in our
previous investigation were recalled. They were then
reformatted as described to make the target ‘rank’ data
ordinal in nature according to the process outlined the
previous subsection. Illustrations of the data structure
for the flat and jumps data can be seen in tables 1 and 2
respectively.

Reusing the exact data from our previous investiga-
tion allowed for easier direct comparison between ordinal
and non-ordinal results, and also saved on computational
workload as some results had already been obtained.

MoPR Draw Race P. Stalls Pos. Race Dis. Strat.
... ... ... ... ... ...

Table 1: Table illustrating the variables used to train the
network for all flat racing after the removal of the ‘distance to
first bend’ variable

MoPR Race Pace Race Distance Strategy
... ... ... ...

Table 2: Table illustrating the considered variables used to
train the network for all jumps races.

Neural Networks

Two separate models were trained using the flat and
jumps data from our previous investigation. Standard
sequential neural networks from the Keras python package
were used and consisted of one input layer, three dense
layers and a regression type output layer. For the flat
model, the network input layer had shape (6,), each of
the subsequent dense layers had nodes 60, 42, 6, and the
final regression layer had 1. For the jumps model, the
input layer had shape (4,), the dense layers had nodes 40,
28, 4 and the regression layer had 1.

ReLu activation functions were used throughout the
network architecture, and a mean squared error loss
function was used to train the models.

Platform and Packages

The analysis was completed using open source Python
packages and the Spyder IDE. These included NumPy,
Pandas, Keras, Sci-Kit Learn, MatPlotLib and Seaborn.
A TensorFlow virtual environment was created for this
task, and all neural networks were trained on an NVidia
GTX 1060 6GB GPU.

Results

Combined Flat Racing

The regression model trained on the combined flat rac-
ing data set achieved a mean squared error score on the
test data of 0.0382, which resulted in a final classification
accuracy of 47.9% and 95.4% to within one rank of error.
The training and test accuracy of the model, as well as the
confusion matrix for its predictions can be seen in figure
2

Jumps Racing

The network trained using jumps racing data achieved a
mean squared error on the test data of 0.0373. This gave
a final exact classification accuracy of 49.2% and an accu-
racy to within one rank of error of 95.8%. The training
and test accuracy of the model, as well as the confusion
matrix for its predictions can be seen in figure 3.

Discussion of Results

Comparison to Classification Approach

For combined flat races, the ordinal network achieved
exact accuracy of 47.9%, and accuracy to within one
of error of 95.4%. This is compared to the traditional
classification approach that we took in our previous
investigation, where the network achieved accuracies of
47.8% and 94.2%. The confusion matrices for the ordinal
and non-ordinal approaches can be seen in figure 4. The
improvement of 0.1% in exact accuracy is minimal and its
difficult to know whether its due to stochastic processes
associated with the use of machine learning algorithms.
The improvement of 1.2% to within one rank of error is
more substantial, and indicative that the introduction or
ordinal techniques improved network performance in a
meaningful way.

At a more granular level, the regression network ex-
hibited a more aggressive tendency to predict rank 3s
for true rank 2s and 4s. It identified 1% more leaders
correctly than the classification network, but 3.2% and
7.2% rank 2s and 4s correctly, respectively.

For the jumps data, the regression network achieved
an exact accuracy of 49.2% and an accuracy to within
one rank of error of 95.8%. This is compared to the
traditional classification network which achieved an exact
accuracy of 49.4% and an accuracy to within one rank
of error of 94.7%. A slight decrease of 0.2% in exact
accuracy is compensated for by a 1.1% improvement in
accuracy to within one rank.

Granular Effects

A key granular effect that emerged after the introduction
of the ordinal techniques was the network’s tendency
to predict almost no rank 4s. This is likely another
result of the challenges the network faces when trying to

2



differentiate between ranks 2-4. It would seem that the
network minimises its MSE loss function by predicting
high values in the rank ’3’ range when it cannot clearly
choose between rank 3 and 4. Whilst this may appear
detrimental to network performance, for our purposes its
not a substantial problem. Further investigation can be
carried out to determine whether the network predicts
true rank 4s as higher output values than true rank 3s,
and bin edges moved to capture more rank 4s. If there is
a correlation between higher rank 3 values and true rank
4s, then a hierarchy distribution for a real race can be
populated by rank ordering the runners according to this.

This finding further reinforces the hypothesis that
the input data used may not contain sufficient infor-
mational detail for a network to regularly distinguish
between ranks 2-4.

Further Work

This investigation concludes our series of studies into the
application of machine learning algorithms to race horse
raking prediction. We have successfully demonstrated
that these techniques can be used to model and predict all
types of racing, across all courses with acceptable degrees
of accuracy. Further work for Quantum Leap solutions
in this area will focus on product implementation and
optimisation over time. A good place to start would be
studying the distribution of prediction values for ranks 3
and 4 to determine if a manually developed classification
step could better distinguish between them.

There are many opportunities for us to apply the
principles explored in these studies to other problems
within race analysis and prediction. Future investigations
will likely focus on statistical analyses of input variables,
other feature prediction and developing deep insights into
potential runner performance.

Conclusion

The introduction of ordinal regression techniques made
little difference to the ability of the models to predict
rankings exactly. For the combined flat model, exact
accuracy improved by 0.1% compared to our previous
classification type network, whilst for the jumps model
it fell by 0.2%. Without conducting numerous repeat
studies where all networks are retrained on the data
from scratch, it is impossible to determine the degree to
which this is due to stochastic processes associated with
machine learning methods. To within one rank of error
both models saw improvement, the flat model by 1.2%
and the jumps model by 1.1%. These values are more
substantial, and therefore more likely to indicate that the
introduction of ordinal regression techniques led to some
meaningful improvement in network predictive accuracy.

Going forward, ordinal type classification problems
will likely be common for Quantum Leap given the
nature of horse racing prediction and analysis. We

have demonstrated in this study that ordinal regression
techniques should be considered and tested whenever we
tackle one of these problems in the future, as it may lead
to material network accuracy improvements.

3



Figure 2: Training and test data accuracy of the regression
network for flat racing, and the confusion matrix for its classi-
fied predictions. The difference between the value tended to by
the training accuracy and the test accuracy is small, but indi-
cates that the test set may have been slightly easier to predict
than the training set.

Figure 3: Training and test data accuracy of the regression
network for jumps racing, and the confusion matrix for its clas-
sified predictions.

4



Figure 4: Confusion matrices for ordinal and non-ordinal flat
models.

Figure 5: Confusion matrices for ordinal and non-ordinal
jumps models

5


