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Abstract

This investigation looked to build upon and extend the work outlined in our previous study, which incorporated machine
learning algorithms for the prediction of racehorse rankings. Neural networks similar to those used previously were applied
to predict rankings for flat races with no bends and jumps racing. Further data analysis and pre-processing steps are also

carried out to improve computational and labour efficiency, and remove some extraneous variables. This included
investigating the most appropriate method for populating missing variables associated with first-time runners. For all

combined flat racing, the network achieved an exact accuracy of 47.8% and accuracy to within one rank of error of 94.2%.
For jumps racing, the network achieved an exact accuracy of 49.4% and an accuracy to within one rank of error of 94.7%.

Investigation

Data and Pre-processing

Data structure was similar to that used in our previous in-
vestigation, with some notable differences across race classes.
For straight flat races, an identical data structure was used
to test the value of the ‘Distance to First Bend’ variable.
After results showed that its omission had little effect on
network accuracy, it was removed from all subsequent data
sets. The structure of the final data set for all flat races is
illustrated in table 1.

For jumps racing, four variables were used; ‘Mode of
previous ranks’, ‘Race pace’, ‘Race distance’ and ‘Strategy’.
There are notably fewer variables for jumps racing as ‘Stalls
Position’ and ‘Draw’ are not relevant. The structure of the
final data set for jumps races can be seen in table 2

MoPR Draw Race P. Stalls Pos. Race Dis. Strat.
... ... ... ... ... ...

Table 1: Table illustrating the variables used to train the network
for all flat racing after the removal of the ‘distance to first bend’
variable

MoPR Race Pace Race Distance Strategy
... ... ... ...

Table 2: Table illustrating the considered variables used to train
the network for all jumps races.

Neural Networks

For our investigations into the effects of removal of the
‘DtFB’ data, and the introduction of a distribution to
populate unknown variables, a standard sequential neural
network identical to that used in our previous investigation
was employed. It consisted of an input layer with shape
(7,), 4 dense layers with decreasing node numbers (2100 -

210) and a dense output layer with four nodes, one for each
classification class. ReLU activation functions were used for
the dense layers, and a Softmax activation function was used
for the final dense classification layer.

Once we had determined that the ‘DtFB’ variable could be
dropped from the data, the input shape for the network
was changed to a (6,) NumPy array. After some brief
investigation into the optimisation of network architecture.
the decision was made to remove one of the dense layers and
decrease the number of sequential nodes. The new network
that would be trained for all flat data now had 3 dense layers
with nodes (240, 60, 6). This reduced the training time
considerably whilst maintaining performance.

The same architecture was then trained on the jumps
racing data with the input layer shape altered to (4,) to
match the structure of jumps data outlined in table 2.

Platform and Packages

The analysis was completed using open source Python pack-
ages and the Spyder IDE. These included NumPy, Pandas,
Keras, Sci-Kit Learn, MatPlotLib and Seaborn. A Tensor-
Flow virtual environment was created for this task, and all
neural networks were trained on an NVidia GTX 1060 6GB
GPU.

‘Distance to First Bend’ Input Variable

In our first investigation, a ‘distance to first bend’ variable
was included to account for the need of horses in flat races to
get onto the best racing line out of the stalls. Collecting the
data for this variable is extremely labour intensive and time
consuming, as it requires visual mapping of courses over all
applicable distances. With the goal of saving time in the fu-
ture, we investigated the effect of removing this variable from
the ‘flat races with bends’ data and retraining an identical
network with the ‘DtFB’ variable omitted.
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Inference of ‘Mode of Previous Ranks’ for
First Time Runners

In our last investigation, the potential effects of assuming the
mode of previous ranks to be equal to 3 for first time runners
was discussed. If a strong correlation exists between a horse’s
previous ranks and its future ranks, then this assumption
may cause the network to over-predict rank 3s relative to
other ranks.

To make the data set more realistic, probability distri-
butions were used to populate these values, derived by
examining the true distributions of ranks for first time
runners over jumps and the flat. The distribution obtained
for first time runners over jumps is shown in figure 1 as
an example. The NumPy function, numpy.choices(), was
then used with probability weights from the distribution to
populate the mode of previous ranks variable for all first
time flat and jumps runners.

We then investigated the effects of this sample wide
change by training and testing two identical networks on
the combined flat racing data - one with a data set where
all first time runners were assumed to have a ‘MoPR’ value
equal to 3, and one where these were populated according
to the probability distributions. The overall accuracies and
granular effects were then compared.

Figure 1: Example probability distribution for true ranks for first
time runners over jumps.

Combined Flat Races

Once the impact of the ‘DtFB’ variable had been established
the decision was made to remove it from all future data sets.
The distribution of ranks produced by first time runners on
the flat was determined and ‘MoPR’ values for horses with no
history populated according to it. The final flat data set con-
sisted of 366217 runner instances, after NaNs and rows with
missing data were dropped. This was then split 80/20 into
a training and test data set. The network was then trained
over 100 epochs and accuracy on the training set recorded.
The test data was then used to generate final results.

Jumps Races

The distribution of ranks produced by first time runners over
jumps was determined and ‘MoPR’ values for horses with no
history populated according to it. The final jumps data set
consisted of 217848 runner instances, after NaNs and rows
with missing data were dropped. This was then split 80/20
into a training and test data set. The jumps network was
then trained over 100 epochs and accuracy on the training set
recorded. The network was then asked to make predictions
for the test data to generate final results.

Figure 2: Example plot of training accuracy for the flat network
with the ‘DtFB’ variable removed.

Results

Removing Distance to First Bend for Flat
Races

Curiously, the network’s overall performance improved after
the removal of the ‘DtFB’ variable. When it was included,
the network was able to predict exact rankings with 47.7%
accuracy, and to within one rank of error with 91.8% accu-
racy. With ‘DtFB’ omitted, the network was able to predict
exact rankings with 48.2% accuracy, and to within one rank
of error with 94.4% accuracy. The confusion matrices for
each data set can be seen in figure 3. Potentially the most
notable granular improvement was the increase in correctly
identified rank 4s, with 14% being exactly predicted when
the data was removed versus just 8.6% with it included.
Exact identification of rank 2s also saw a slight improvement
to 8.0% from 6.1%.

The improvements in overall accuracy came with some
costs in specific areas. Comparing the two confusion ma-
trices, it can be seen that omitting the ‘DtFB’ data led to
a decrease in precise accuracy for rank 3 predictions, and
an increase in the proportion of true rank 3s predicted as
2s and 4s. In addition, nearly twice as many true rank 2s
were predicted as 4s when the ‘DtFB’ data was omitted than
when it was included.

It was decided that the broad improvements in accu-
racy, especially the increase in accuracy to within one rank,
justified the granular deterioration seen in some cases, and
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the ‘DtFB’ data was dropped from all further investigations.
The decision was also driven by the desire to save labour
time on data entry, as previously mentioned.

Figure 3: Confusion matrices for networks trained with the dis-
tance to first bend variable included and without. The top CM
shows the results with the ‘DtFB’ data included and the bottom
CM shows the results produced by an identical network trained
with the data omitted.

Using a Distribution for Mode of Previous
Ranks

When compared to a scenario where all values were assumed
to equal ‘3’, the use of a representative distribution to
infer the first time runner ‘mode of previous ranks’ variable
produced some intriguing outcomes. Comparing the results
respectively, the networks achieved exact accuracies of 47.5%
and 47.8%, and accuracies to within one rank of error of
93.3% and 94.2%. The confusion matrices for these models
can be seen in figure 4.

Although the overall accuracies indicate a slight edge
in favour of the use of the distribution, the granular changes
are more nuanced in nature. Substantially better results were
seen for exact predictions of rank 2s and 4s when all values
were assumed to equal 3 - 16.0% and 24.0% versus 11.0%
and 10.0% with a proportionally representative distribution.
This was offset to some degree by a decreased performance

for the exact prediction of rank 3s - 76.0% with all values
equal to 3 versus 88.0% with a representative distribution.
This will be explored further in the discussion section.

Figure 4: Confusion matrices for networks trained with flat races
data. The top CM illustrates a network trained when all first time
runners were assumed to have an ‘MoPR’ variable equal to 3. The
bottom CM shows the results after these values were populated
using a derived probability distribution.

Given the slight improvements seen in overall accuracy values
when a representative distribution was used, all data going
forward had its first time runners ‘mode of previous ranks’
variable populated according to probability distributions.

Combined Flat Races

Since the ‘DtFB’ variable was found to make little difference
to the predictive ability of our network, all flat racing data
was combined into one set and used to train a new model.
This model achieved an overall exact accuracy of 47.8% and
an accuracy to within one rank of error of 94.2%. These
values are comparable to the results seen in our previous
investigation where a model trained using only races with
at least one bend and a ‘DtFB’ variable produced respective
accuracies of 47.7% and 91.8%. The confusion matrix for
these results can be seen in the second image of figure 4.

A similar granular pattern to that seen in our previous
investigation was found for each ranking. The network
performed comparatively well when predicting leaders, but
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Figure 5: Network training accuracy plot and confusion matrix
for jumps racing results.

struggled to differentiate between ranks 2-4, predicting a
large majority of values in this range as 3s.

Jumps Races

The model trained using data from jumps races achieved
an exact prediction accuracy of 49.4% and and accuracy to
within one rank of error of 94.7%. The network training ac-
curacy plot and confusion matrix for these results can be seen
in figure 5. The results are comparable to those achieved for
flat races with bends and our combined flat races approach.
Again, a similar granular pattern emerged. The network was
most effective for predicting leaders, successfully identifying
66% of true values for rank 1, but struggled substantially to
differentiate with confidence between ranks 2-4.

Discussion of Results

Removal of ‘Distance to First Bend’ Variable

Given that the only change that was noted in network
performance after the removal of the distance to first bend
data was a slight improvement in performance, the decision
was made to drop that variable moving forward. It may have
been the case that the variable had a low correlation to rank
outcome and therefore only acted to add noise to the input
data. A full correlation analysis to be carried in our fu-
ture work should help to determine whether this was the case.

In terms of practicality and time saving potential, this
is a beneficial result. Mapping the distance to the first
bend for all distances over all courses is a time consuming
and labour intensive process that no longer needs to be
completed. Furthermore, the result showing that a single
model for all flat races produces equivalent performance
offers many implementation related benefits. The need to
have separate models working for straight flat and bending
flat races would have incurred financial and labour costs.
Two distinct data processing pipelines would have had to
have been constructed, and results differentiated from each

other before productisation. These can now be combined
into a singular, more efficient pipeline and model for all flat
race predictions.

Inference of ‘Mode of Previous Ranks’ for
First Time Runners

The results observed when applying a probability distribu-
tion to this task were intriguing. In the flat data, there were
18108 instances of first time runners that had their ‘MoPR’
inferred from the distribution, in the jumps data there were
16393. These, therefore, represent 4.94% and 7.52% of their
total data sets respectively, and both are substantial enough
to assume that they can influence outcomes.

When closely examining the confusion matrices in fig-
ure 4, it appears that the introduction of the distribution
primarily acted to make the prediction of a rank 3 more
likely. The ‘spread’ around predictions of a rank 3 became
much tighter, with an increase in exact accuracy for true
rank 3s from 76% to 88%. The same effect has manifested
for true ranks 2 and 4, but around predictions of rank 3.
That is to say, the network began predicting more rank 2s
and 4s as rank 3s, leading to decreases in exact prediction
accuracy for those values.

The reasons for this are complex and a thorough anal-
ysis of outcomes and repeat tests would be necessary to
determine with any degree of certainty what those causes are.
However, speculatively, this ‘tightening’ may be caused in
part by the ‘scattergun’ approach that results from populat-
ing the values according to a probability distribution. While
the use of the distribution makes the broad characteristics
of the sample more true to life, nothing can be said about
the effect it has on an individual horse’s profile. It must be
considered that the assignment of a ‘MoPR’ value is random
and dictated by the probabilities that we have derived by
examining the final distributions. For example, we can
determine the probability that a given ‘MoPR’ correctly
reflects the rank that the horse produces in that run, as
shown in table 3.

Rank Prob. MoPR Assigned Prob. Rank Produced Prob. Match Correct
1 0.08 0.08 0.0064
2 0.19 0.19 0.0361
3 0.43 0.43 0.1850
4 0.30 0.30 0.0900

Sum 1.00 1.00 0.3175

Table 3: Table illustrating the probabilities associated with the
assignment of a ‘MoPR’ value and the likelihood that a first time
runner will produce the matching rank.

As can be seen in the table, a rank chosen to represent
the ‘MoPR’ for a first time runner has a 31.75% chance of
matching the rank the horse will actually produce first time
out. It should noted, that this means that fewer individual
rankings will actually be exactly correct compared to the
scenario where all are assumed to be 3s, as 43% of all first
time runners produce 3s. This may have made it harder for
the network to draw clear distinctions between ranks 2-4,
as in the assumed ‘MoPR = 3’ data, all true rank 3s would
have been ‘MoPR’ rank 3s. In the data populated with the
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distribution, 68.25% of all final true rank values would not
have corresponded to their matched ‘MoPR’. This introduces
noise on the granular level into the data set, as many true
rank 1s may be assigned an ‘MoPR’ of a 3 or a 4. The way
the network manifests this is very complex due to its black
box nature, but discrepancies in the trend for ‘MoPR’ to
indicate a particular detailed outcome would make it harder
to predict with high precision.

Also interesting are the differences in magnitude be-
tween the probabilities of correct matching for each rank.
Rank 3 has the highest likelihood of being correctly matched,
with an 18.5% chance, whilst rank 1 has only a 0.64% chance
of the same. The range seen here may explain to some degree
the ‘tightening of spreads’ effect that was seen when the
distribution was introduced to the data. It was previously
discussed how the network may find a local minima by
over-predicting 3s where it struggles to differentiate between
ranks. Given the increased probability (across not just the
sample but the whole population) of a true rank 3 being
produced, the network may be able to minimise its loss
function by predicting a 3 when the task is difficult. With
the added noise caused by the randomness of distribution
assignment, the network may have reverted to this approach
somewhat, minimising its loss function by over predicting
rank 3s as they make up 43% of all true ranks.

Combined Flat Races

The results for combined flat races were comparable to those
achieved when flat races were split into those with bends
and those without. As previously outlined, the primary
reason for doing this was because it was suspected that the
need for a horse drawn wide to get onto the best racing line
early would be important. This required the introduction of
the ‘DtFB’ variable, and made it challenging to model this
variable for straight flat races. As it turned out, the variable
held little sway on the network’s ability to predict rankings,
and so was removed from all future data sets.

The option to remove this variable is a fortuitous re-
sult and will save us a great deal of time and labour in the
future when we expand to incorporate races from outside of
Great Britain. Furthermore, all flat races can be combined
into one data set and used to train a single model, rather
than having one for bends and one for straights.

Jumps Races

The results for jumps races were also comparable to those
obtained for data over the flat. The jumps network was ap-
proximately 1.6% more accurate with exact predictions and
0.5% more accurate to within one rank of error. This is likely
due to more horses being ridden the same way repeatedly over
jumps, versus over the flat where strategies can vary more of-
ten. This theory is reinforced by the result that the jumps
network predicted 4% more leaders correctly than the flat
network. Leading with the goal of making all the running is
a common strategy for some horses and trainers.

Further Work

There is still great scope for further investigation in this area.
One target area for improvement could be the application
of the ranking distributions for populating the ‘MoPR’ data
for first time runners. Conditional rules could be set so
that maiden races contain rankings in exactly the correct
distribution, helping to guarantee the correct distribution
of rankings at a more granular level. Other input variables
could also be considered given that some trainers set out with
the objective of runner first timers with particular strategies.
This may help to indicate whether a horse will be held-up,
lead or sit prominent - an inference issue that needs to be
tackled for ‘forward’ race prediction before implementation
regardless. A combination of these two techniques would
hopefully lead to a synergistic interaction, where the high
probability that one horse may run at the front due to its
strategy would eliminate the possibility of other horses in
the race being predicted a rank 1, further improving overall
prediction accuracy.

We mentioned in our previous study that approaching
this problem using ordinal regression methods could help to
improve network accuracy. Now that all major race types
have been accounted for and we have an implementable
product, testing ordinal techniques to try and optimise
predictive performance would be a logical next step.

Beyond this, a full correlational analysis between a multi-
plicity of variables and a horse’s final rank should be carried
out. This will provide insight regarding which inputs may be
beneficial to add to data and which may be extraneous.

Conclusion

This investigation expanded considerably on the findings
from our last paper on the application of machine learning
algorithms to race horse ranking prediction. We began by
investigating the effects of removing the labour intensive
variable, ‘distance to first bend’ to save time, and introducing
more representative distributions to populate the ‘mode of
previous ranks’ variable for first time runners. It was found
that the ‘DtFB’ could be removed without degrading network
performance, so it was dropped from all subsequent data sets.
The introduction of a true to life probability distribution
for first time runner ranks to infer the ‘MoPR’ variable
yielded some interesting results. A slight improvement in
general network accuracy was seen, with some degradation
at the granular level for specific rankings. Due to the slightly
improved performance, this methodology was then deployed
for all subsequent data sets.

For all combined flat races, the trained network achieved an
exact accuracy of 47.8% and an accuracy to within one rank
of error of 94.2%. The model trained on jumps data achieved
an exact accuracy of 49.4% and an accuracy to within one
rank of 94.7%. Overall, these results were comparable to
those obtained in the previous investigation, and confirm
that two separate models to cover all race types will be
sufficient upon implementation.
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Further work should focus on the introduction of or-
dinal regression techniques to investigate whether they
improve network accuracy, and a full correlational analysis
of input variables and final ranks should be completed.

Notes

The aforementioned previous paper can be found
at: https://www.quantumleapsolutions.co.uk/wp-
content/uploads/2022/04/Quantum-Leap-Solutions-
Machine-Learning-Rankings-Analysis.pdf
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