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Abstract

This report investigates the plausibility of utilising machine learning algorithms for the prediction of racehorse
rankings based on a variety of the data that QL Solutions collects. Currently, a complex set of statistical analyses
are used to predict runner position based upon previous form, ratings and race information. The application of
machine learning algorithms to this task has the potential to greatly increase computational efficiency whilst

maintaining high predictive accuracy. Moreover, ML programmes would allow for a high level of automation, built
on top of the QL architecture already in place for data capture and manipulation. To act as a first proof-of-concept
test, rankings data along with seven relevant variables was compiled and then used to train and test a sequential,
classification type neural net. The network achieved 47.7% accuracy when predicting an exact rank, and 91.8%
accuracy to within one rank of error, both are comparable to results achieved by complex statistical models. The
same data was then used alongside the automated machine learning package, Auto-Keras, to investigate whether

changes in architecture could produce better results.

Investigation

Data and Pre-processing

For this investigation, data was compiled that considered
seven variables hypothesised to have correlation with
final ranking; ’distance to first bend’, ’mode of previous
ranks’, ’draw’, ’race pace’, ’stalls position’, ’race distance’
and ’strategy’. Aside from their likely relations to rank
outcome, these variables were chosen because of their
generality across a wide range of races, courses and horses.
The variable ’distance to first bend’ acts to generalise the
importance of initial race positioning across all courses
and distances, and the ’mode of previous rankings’ and
’strategy’ variables generalise previous performances
across all horses. These generalisations greatly increase
the size of the available data set, at minimal cost to the
specific informational detail contained in course, race and
horse variables.

Rankings data was modelled on QL’s 1-4 ranking
system. Rank 1 representing the leader(s), rank 2 being
prominent horses, rank 3 the main body of the field and
rank 4 the back of the pack.

DtFB MoPR Draw Race P. Stalls Pos. Race Dis. Strat.
... ... ... ... ... ... ...

Table 1: Table illustrating the considered variables used to
train the network

In this case, data was only considered from flat courses
in Great Britain where races had at least one bend.
This was done to eliminate the added complication of
”straight” races which would have to have their ”DtFB”
values modelled as either zeros or infinities for the
network. Zeros would dilute the data considerably and be
difficult to differentiate from races that start on a bend.

Infinities are complex to get a network to recognise, so for
the purpose of this ”proof-of-concept” test, all straight
races were ignored. Other nations and jumps racing data
was omitted to save time in the initial investigation phase.

The data was then cleaned to remove any NaNs,
and rows with more than one missing value were dropped.
For horses who had not previously run, and so had no
’mode of previous rank’ variable, a value of 3 was assumed
as it is most common. The final input data consisted
of 185555 runner instances. These were split 80/20 into
148444 training instances and 37111 test instances.

Neural Network

A standard sequential neural network was constructed us-
ing assets from the Keras Python package. This network
consisted of an input layer with shape (7,), 4 dense layers
with decreasing node numbers (2100 - 210) and an dense
output layer with four nodes, one for each classification
class. ReLU activation functions were used for the dense
layers, and a Softmax activation function was used for
the final dense classification layer. Accordingly, the final
output was a probability of each ranking being true.
The ranking with maximum probability value was then
selected as the network’s final classification. A categorical
cross-entropy loss function was used to train the network
over 100 epochs.

As previously mentioned, the training data was also
fed into an automated machine learning package, Auto-
Keras. Auto-Keras uses evolutionary search principles to
trial, interpret and refine model architectures to optimise
performance. In this investigation, little accuracy in-
crease was expected as the nature of the task is such that
network architecture should yield minimal improvement
beyond a plateau. For the automated machine learning
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test, a standard Auto-Keras DataClassifier type model
was initiated.

Platform and Packages

The analysis was completed using open source Python
packages and the Spyder IDE. These included NumPy,
Pandas, Keras, Sci-Kit Learn, MatPlotLib and Seaborn,
as well as the Auto-Keras package for automated machine
learning. A TensorFlow virtual environment was created
for this task, and all neural networks were trained on an
NVidia GTX 1060 6GB GPU.

Results

Traditional Neural Network

The network performed well compared to the complex
statistical models currently used for ranking prediction,
achieving an overall accuracy of 47.7% on the test data
set. After training over 100 epochs the network accuracy
began to plateau, and the expected effects of diminishing
returns were seen. Any improvement beyond this point
is assumed to be the result of over-fitting to the training
data set. The accuracy plot can be seen in figure 1.

Figure 1: Plot of network prediction accuracy by training
epoch. It is clear to see that diminishing returns were ob-
tained after approximately 10-15 epochs, and any improvement
beyond this point is likely due to over-fitting to the training
data set.

The network was most effective at precisely predicting
rank 3, successfully identifying 92% of true values. Perfor-
mance for rank 1 was also impressive, with correct predic-
tions made in 63% of instances. Despite this, 30% of true
rank 1s were classified as rank 3s, a surprising result which
would not have necessarily been expected. The network
struggled substantially more when trying to identify ranks
2 and 4 exactly, correctly predicting only 6.1% and 8.6%
of their instances, respectively. It mischaracterised 87%
of rank 2s and 90% of rank 4s as false negative rank 3s,
indicating great difficulty in telling them apart. Excluding
true rank 1 instances, the network only scored 45.6% ac-
curacy, only 0.15% better than if it had simply predicted
rank 3s for all these instances. Figure 2 shows the confu-
sion matrix for these results. Each number represents the

percentage of predictions made for that true rank value
(i.e. 63% of rank 1s, were predicted as rank 1s, with 6.7%
predicted as rank 2s, etc).

Figure 2: Confusion matrix for the network predictions. Val-
ues in squares correspond to the percentage of predictions for
that true value (i.e. sum of row = 100%). This was chosen,
rather than the percentage of total predictions, to give a bet-
ter feel for how good the network was with regard to each true
value.

To within one rank of error, the network made a cor-
rect prediction 91.8% of the time. This was calculated
by analysing how many predictions were greater than one
rank away from their true value across all instances. Fig-
ure 3 shows the distributions of these percentages for each
true rank individually, with the bar for correct predictions
shown in red.

Automated Machine Learning

When training the automated model, no notable accuracy
improvement was seen, with the model achieving 47.6%
accuracy across all data points. Whilst Auto-Keras did
not prove useful for improving network performance, it
did act to reinforce the belief that altering network archi-
tecture would yield no further results.

Discussion of Results

Overall, the neural network performed comparably well
when predicting horse rankings, achieving 47.7% accuracy
on precise prediction, and 91.8% to within one rank of
error across all data points.

The introduction of the automated machine learning
package Auto-Keras served two purposes. First, it offered
the potential for improved performance through better
optimised network architecture. Second, even though im-
proved performance was not realised, it acted to confirm
that classification accuracy was not being bottle-necked
by network structure. It can therefore be inferred that
the upper limit of network accuracy is currently limited
by the quality of the input data and the nature of the
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Figure 3: Distributions of prediction values for each true rank,
with the bar for correct predictions shown in red. It is clear to
see that the network performed best when predicting rank 3s,
and also performed well when predicting rank 1s. It struggled
greatly with delineating rank 2s and 4s from rank 3s.

relationships between the selected variables and final
rankings.

One notable result was the network’s relatively good
performance when predicting leaders (True Rank = 1).
The network exactly identified 63.0% of instances, and
predicted to within one rank of error in 69.7% . It is
likely that this is due to the nature of our input data,
rather than some unique feature associated with rank 1.
Most rankings data is manually inputted, and a ranking
of 1 has less intrinsic subjectivity associated with it than
values 2-4. What may appear to be a 2 to one person,
may be a 3 to others, and vice versa. Conversely, entry
is certain when inputting a leading horse’s position as
a 1. For this reason, correlations between our seven
variables and a ranking of 1 may be less ”diluted” than
correlations for other rankings, resulting in more accurate
classification by the network. This effect is further
evidenced by the difficulties faced when the network is
trying to differentiate between ranks 2-4.

It is also possible that rank 1s are easier for the
network to predict for a number of reasons. It is impor-
tant to consider that a subset of horses will be ridden
with the goal of always leading because they get the
best results when they do so. Other horses are always
held up, but may be classed as a rank 2, 3 or 4 when
they settle into the fields of different races. This may
act to ”exceptionalise” rank 1s and make them easier
for the network to predict due to the extreme nature
of the strategy. Further analysis would be required
to determine the degree to which this ”dilution” of
relationships between the input data and the rankings,
caused by human interpretation upon data entry, was re-
sponsible for poorer network performance for rankings 2-4.

It also is worth considering the overall distribution
of rankings and how this may have affected the training of
the network. Figure 4 shows the distribution plots for the
true rankings versus the distribution of those predicted
by the network. For our true values, 3 is the most
common rank by some margin, representing just over
40% of all values. Ranks 4 and 2 are similarly common,
representing 25% and 22% of all ranks, respectively.
Finally, rank 1s are rarest, comprising only 13% of all
values. This distribution is as would be expected, as races
will generally have a single leader (rank 1), two or three
prominent (rank 2) and rear (rank 4) horses, and a larger
main body of the field (rank 3).

In contrast to the true rank distribution, the net-
work predictions show a large over-representation of rank
3s, and substantial under-representations of ranks 2 and
4. Rank 1s were predicted in relative accordance with the
true value distribution. This is likely a further manifes-
tation of the network’s difficulties when trying to select
between ranks 2, 3 and 4. With rank 3 being the most
common value, it’s possible that the softmax-categorical-
crossentropy loss function finds a local minimum by
selecting rank 3s in a majority of cases when the class
is hard to distinguish - this could be considered a type
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of ”over-fitting”. Cleaner input variables with stronger
correlations to their output rank may be needed to reduce
this effect, as S-C-CE is by far the most suitable loss
function for this type of multi-class classification problem.
In future work, it would be worth investigating the effects
of ordinal classification techniques, as the S-C-CE loss
function does not punish a prediction which is incorrect
by two ranks any more heavily than a prediction incorrect
by one rank. The introduction of these practices may
improve network accuracy, especially to within one rank
of error.

The issues with distinguishing ranks 2-4 may have
been exacerbated by assuming ”mode of previous ranks”
equals 3 for first time runners. If a relatively strong
correlation exists between ”mode of previous ranks”
and ”rank” then the network may have been trained to
slightly over-select for rank 3s compared to others. This
issue could be remedied by populating the variable for
first time runners with a more representative distribution
and this should be tested in future work.

Despite the challenges faced by the network, the re-
sult that it is accurate in 91.8% of cases to within
one rank of error is highly promising. Currently, our
best statistical models are approximately 80% accurate
to within one rank, so this would represent a notable
improvement.

Further Work

There is a great deal of opportunity for further work
in this area. The next logical step would incorporate
straight flat and jump races data into training and look
to determine whether separate models are required to
obtain equivalent results.

It may also be worth investigating techniques for
improving the quality of data capture, whether this
be through automation or redistribution of rankings
post race result. A full correlational analysis of input
variables versus their corresponding output rank should
also be conducted. This will help us better understand
which input variables are having the largest effect when
a ranking is predicted, and allow for the removal of
extraneous inputs.

QL also uses a more sophisticated rankings system
when predicting future events. This incorporates full
rankings for each race. Having the network automatically
adapt to the required number of runners would be
technically challenging, so it’s likely that a hierarchy of
probable rankings would need to be established for each
race based on the 1-4 system. This would be relatively
easy to implement by using the output probabilities from
the Softmax activation function. The hierarchy could
then be used to populate the field for a more complete
rankings list.

Finally, it should be acknowledged that this prob-
lem could be categorised as an ”ordinal” classification

problem. That is, it falls somewhere between traditional
classification and regression problems. This is because
the relation between the ranks 1-4 represents an ”order”,
i.e. they are related in the sense that a rank 3 is closer
to a rank 4 than a rank 2 is to a rank 4. In this sense,
a prediction to within one rank of error is better than
to within two ranks of error. The classification groups
are not entirely independent. Ideally, the loss function
of the network would punish a prediction that was two
ranks away from true more heavily than a prediction
that was only one rank away from true. The categorical
crossentropy function punishes equally for all degrees of
error.

There may be scope for the incorporation of ordinal
classification techniques and algorithms to improve
network predictive accuracy. The effects of taking an
ordinal approach should be investigated and contrasted
with simple classification.

Figure 4: Plots of the distribution of true ranks and the dis-
tribution of ranks predicted by the network. It is clear to see
that the network has substantially over-estimated the occur-
rence of rank 3s, and underestimated the overall occurrence of
ranks 2 and 4.

Conclusion

This investigation proved successfully that machine
learning algorithms can predict racehorse rankings with
accuracy comparable to that of our most sophisticated
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statistical models. The model achieved approximately
47.7% accuracy for precise ranking prediction, and 91.8%
to within one rank of error.

Whilst this test has clearly shown that ML algo-
rithms are capable of tackling the problem of ranking
predictions, there are some caveats to our results. Firstly,
it must be noted that straight flat races were excluded
from the data set used to train the network. Upon
the introduction of straight races, we would expect the
network performance to decrease due to the increased
complexity associated with comparing races with bends
and straight races. It may be necessary in the future to
train two, separate models, one for each data set. A third
model may also be required for training on jumps racing
data.

Secondly, the 1-4 rankings system introduces various
systematic biases that could, paradoxically, lead to both
improved and reduced predictive accuracy. For example,
the previously discussed human biases introduced when
inputting rankings 2-4 may have made it substantially
more difficult for the network to differentiate between
those rankings.

Future work should focus on the incorporation of a
wider range of race types, and consider the discussed
improvements in data collection techniques and pre-
processing.

5


